The Infrastructure Materials focus area at Oregon State University emphasizes the fundamental understanding of materials and property relationships, microstructural development and its impact on long-term performance, durability and sustainability of civil and construction engineering materials, principles of green construction and materials selection as well as rehabilitation, assessment and repair of infrastructure with a focus on materials aspects.  Research opportunities abound and are supported in the suite of world-class Infrastructure Materials Laboratories

Infrastructure Materials faculty and their specific areas of research are listed below:

Erdem Coleri's research interests are in the areas of sustainable pavement materials and structures, energy efficient pavement design strategies, and infrastructure health monitoring using wireless sensor networks. The major objective of Coleri research group is to develop methods and technologies to construct pavement structures that are more cost effective, socially beneficial, and does less damage to the environment. Main research projects include i) modeling and measuring excess vehicle fuel use due to pavement structural response; ii) asphalt pavement layer adhesion through tack coats; iii) adjusting asphalt mixes for increased durability; iv) improving performance of recycled asphalt pavement mixes.

Jason Ideker’s research interests are in the area of early-age volume change of cement-based materials and concrete durability. His research group is actively investigating ways to reduce early-age cracking in high performance concrete and understanding volume change in alternative cementitious systems. As an internationally recognized expert in alkali-silica reaction (ASR), Dr. Ideker and his team investigate ways to improve and develop new ASR test methods that accurately reflect field performance. The group also develops fundamental knowledge about the mechanisms of ASR mitigation. Dr. Ideker also focuses on providing rapid and effective repair strategies, particularly related to material selection, for the aging infrastructure prevalent throughout the world.  

Burkan Isgor’s research and teaching interests include materials science of cement and concrete, corrosion, electrochemistry, surface science, computational materials science, and non-destructive model-assisted testing of materials and structures. The ultimate goal of his research is to develop integrated numerical and sensory tools for infrastructure owners and operators so that they can better evaluate the state of their assets and make informed decisions on their future. These tools help engineers manage infrastructure by allowing them to schedule maintenance, rehabilitation and replacement operations more efficiently and accurately so that their assets will be resilient against extreme conditions imposed by multiple sources of hazard. To develop this understanding he combines computational techniques and experimental methods to bridge length scales, from atomistic/nano-scale to macroscopic, so that one can include chemistry and physics at a fundamental level into endeavors for modeling and characterization of various material behavior.

David Trejo's research focuses on the design and development of materials and systems for efficient construction processes and products. His interests focus on the design and development of systems that allow for accelerated and durable construction. Specific research projects have included development of precast overhang systems for safe, rapid, and durable bridge construction, assessment and modeling of segmental, post-tensioned bridges exhibiting strand corrosion, development of refractory materials for NASA’s launch complex, modeling and performance assessment of glass fiber-reinforced polymer (GFRP) concrete reinforcement, and many others. His teaching interests include heavy civil construction methods and processes, cementitious materials and systems, rapid and durable construction. With almost 10 years of experience in the field, Dr. Trejo brings real-world applications into the classroom. 

Jason Weiss' research and teaching focus is on the development of mixture design procedures to reduce shrinkage, curling and cracking as well as test methods to evaluate the performance of these mixtures. Specifically, his research group is well known for work in the area of shrinkage reducing admixtures and internal curing. His research group has performed substantial research on the freeze-thaw performance of concrete and the durability of concrete exposed to deicing salts. This work has substantial impact on the durability of concrete pavements and the development of performance specifications for concrete pavements. His research group is well known for their use of a variety of test methods to assess transport properties in concrete and the use of these material properties in models that can predict the service life of concrete elements.

Graduate Student Spotlights: learn more about the students who call Oregon State home

Matt Adams

Monica Morales

Research Papers and Projects Examples

Alkali–Silica Reaction: Current Understanding of the Reaction Mechanisms and the Knowledge Gaps,” Rajabipour, F., Farshad, R., Giannini, E., Dunant, C., Ideker, J.H., Thomas, M.D.A., Cement and Concrete Research, V 76, 2015, pp. 130-146, October 2015. 

Electrical Response of Mortar with Different Degrees of Saturation and Deicing Salt Solutions During Freezing and Thawing,” Farnam, Y., Todak, H., Spragg, R., Weiss, J., Cement and Concrete Composites, V 59, pp. 49-59, May 2015 

Nano-scale Investigation of Interactions of Chlorides with Oxides That Form on Carbon Steel in Concrete Pore Solutions,” Ghods, P., Isgor, OB., Gunay, HB., Nanotechnology in Construction, pp. 479-484, 2015.

Time-Variant Seismic Performance of Corroding RC Bridge Columns," Guo, Y., Trejo, D., and Yim, S., J. Struct. Eng., 10.1061/(ASCE)ST.1943-541X.0001145, 04014158.

Long-term Performance of Glass Fiber-reinforced Polymer (GFRP) Reinforcement,” Trejo, D. (PI), Gardoni, P. (co-PI), Sponsored by Texas Department of Transportation.