EVALUATION OF SAFETY ALTERNATIVES

Economic Evaluation of Alternative Projects

• Objective
 – Compare costs and benefits of projects on equivalent basis
 – Use equivalent basis of total present sum, or of uniform annual costs in same year
Economic Evaluation

• Economic evaluation is required when;
 – Costs are high
 – Countermeasures compete at one site
 – Benefits vary for various countermeasures

• FHWA requires an economic evaluation to justify the use of federal funds

Bases of Comparison for Economic Analysis

• Costs of safety improvements include;
 – Construction or implementation costs
 – Operation (of facility) costs
 – Maintenance costs
 – Salvage value (or costs)
Economic Evaluation of Alternative Projects

• Safety benefits include
 – Reduction in;
 • Fatal accidents + Type A Injury
 • Injury accidents (Type B & C)
 • PDO accidents
 – Also
 • ' Travel time
 • ' Delay
 • ' Operating costs

Economic Evaluation of Alternative Projects

• Equivalent basis of comparison
 – Equivalent uniform annual costs/benefits
 – Present worth of costs/benefits
 – Future worth of costs/benefits
Economic Analysis Basics

Comparison of Projects on Equivalent Uniform Annual Cost/Benefit Basis

- Definitions
 - Initial costs or benefits = P
 - Annual costs or benefits = A
 - Future costs or benefits = F
Comparison of Projects on Equivalent Uniform Annual Cost/Benefit Basis

• Method
 – Convert all benefits and costs to equivalent uniform annual amounts:
 • $P \rightarrow A \ ; \ A = [\text{capital recovery factor}] \times (P)$
 • $F \rightarrow A \ ; \ A = [\text{SFF}] \times (F)$
 – Convention
 • $P \rightarrow A \ (\text{service life}, \text{discount rate}) = \text{capital recovery factor}$

 i.e., Factor to take present sum and convert to equivalent equal periodic payments

Calculations of Equivalent Uniform Annual Costs

GIVEN:
 Initial cost = $1,000
 Service life = 10 years
 Discount rate = 10% per year

FIND:
 Convert to equivalent uniform annual amount
 Find tabled factor $P \rightarrow A \ (10 \text{ yrs, } 10\%) = 0.1627$
 Calculate equivalent uniform annual cost
 $\text{EUAC} = $1,000 (0.1627)$
 $\text{EUAC} = 163
7% Interest Factors for Annual Compounding Interest

<table>
<thead>
<tr>
<th>YEAR</th>
<th>AMOUNT</th>
<th>AMOUNT</th>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-P</td>
<td>F-A</td>
<td>A-F</td>
<td>F-P</td>
<td>F-A</td>
<td>A-P</td>
</tr>
<tr>
<td>1</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.9346</td>
<td>0.9346</td>
<td>0.9346</td>
</tr>
<tr>
<td>2</td>
<td>1.070</td>
<td>0.9346</td>
<td>0.9346</td>
<td>0.8734</td>
<td>0.8734</td>
<td>0.8734</td>
</tr>
<tr>
<td>3</td>
<td>1.143</td>
<td>0.8734</td>
<td>0.8734</td>
<td>0.8124</td>
<td>0.8124</td>
<td>0.8124</td>
</tr>
<tr>
<td>4</td>
<td>1.219</td>
<td>0.8124</td>
<td>0.8124</td>
<td>0.7513</td>
<td>0.7513</td>
<td>0.7513</td>
</tr>
<tr>
<td>5</td>
<td>1.300</td>
<td>0.7513</td>
<td>0.7513</td>
<td>0.6916</td>
<td>0.6916</td>
<td>0.6916</td>
</tr>
<tr>
<td>6</td>
<td>1.383</td>
<td>0.6916</td>
<td>0.6916</td>
<td>0.6324</td>
<td>0.6324</td>
<td>0.6324</td>
</tr>
<tr>
<td>7</td>
<td>1.470</td>
<td>0.6324</td>
<td>0.6324</td>
<td>0.5744</td>
<td>0.5744</td>
<td>0.5744</td>
</tr>
<tr>
<td>8</td>
<td>1.560</td>
<td>0.5744</td>
<td>0.5744</td>
<td>0.5178</td>
<td>0.5178</td>
<td>0.5178</td>
</tr>
<tr>
<td>9</td>
<td>1.653</td>
<td>0.5178</td>
<td>0.5178</td>
<td>0.4626</td>
<td>0.4626</td>
<td>0.4626</td>
</tr>
<tr>
<td>10</td>
<td>1.749</td>
<td>0.4626</td>
<td>0.4626</td>
<td>0.4090</td>
<td>0.4090</td>
<td>0.4090</td>
</tr>
</tbody>
</table>

Source: LHSS Users Guide, pp C-10

10% Interest Factors for Annual Compounding Interest

<table>
<thead>
<tr>
<th>YEAR</th>
<th>AMOUNT</th>
<th>AMOUNT</th>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P-F</td>
<td>F-P</td>
<td>A-P</td>
<td>F-P</td>
<td>A-P</td>
<td>A-P</td>
</tr>
<tr>
<td>1</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.9091</td>
<td>0.9091</td>
<td>0.9091</td>
</tr>
<tr>
<td>2</td>
<td>1.070</td>
<td>0.9091</td>
<td>0.9091</td>
<td>0.8264</td>
<td>0.8264</td>
<td>0.8264</td>
</tr>
<tr>
<td>3</td>
<td>1.143</td>
<td>0.8264</td>
<td>0.8264</td>
<td>0.7513</td>
<td>0.7513</td>
<td>0.7513</td>
</tr>
<tr>
<td>4</td>
<td>1.219</td>
<td>0.7513</td>
<td>0.7513</td>
<td>0.6830</td>
<td>0.6830</td>
<td>0.6830</td>
</tr>
<tr>
<td>5</td>
<td>1.300</td>
<td>0.6830</td>
<td>0.6830</td>
<td>0.6150</td>
<td>0.6150</td>
<td>0.6150</td>
</tr>
<tr>
<td>6</td>
<td>1.383</td>
<td>0.6150</td>
<td>0.6150</td>
<td>0.5488</td>
<td>0.5488</td>
<td>0.5488</td>
</tr>
<tr>
<td>7</td>
<td>1.470</td>
<td>0.5488</td>
<td>0.5488</td>
<td>0.4859</td>
<td>0.4859</td>
<td>0.4859</td>
</tr>
<tr>
<td>8</td>
<td>1.560</td>
<td>0.4859</td>
<td>0.4859</td>
<td>0.4254</td>
<td>0.4254</td>
<td>0.4254</td>
</tr>
<tr>
<td>9</td>
<td>1.653</td>
<td>0.4254</td>
<td>0.4254</td>
<td>0.3683</td>
<td>0.3683</td>
<td>0.3683</td>
</tr>
<tr>
<td>10</td>
<td>1.749</td>
<td>0.3683</td>
<td>0.3683</td>
<td>0.3138</td>
<td>0.3138</td>
<td>0.3138</td>
</tr>
</tbody>
</table>

Source: LHSS Users Guide, pp C-13
Information Needed for Economic Evaluation

- Construction / installation costs
- Operation and maintenance costs
- Anticipated safety benefits

Economic Evaluation Process

- Estimate accident reduction potential
- Estimate the safety benefits:
 \[
 \text{Safety benefits} = \sum \text{fatal acc.} \times \$\text{fatal} + \sum \text{injury acc.} \times \$\text{injury} + \sum \text{PDO’s} \times \$\text{PDO}
 \]
- Determine construction / installation / operation / maintenance costs
- Put all costs/benefits on a common economic basis
 - Equivalent uniform annual costs/benefits
 - Present worth of costs/benefits
- Compare benefits and costs
Implementation Costs

• Include all costs incidental to;
 – Construct
 – Install
 – Operate
 – Maintain

Other Information Needed for Economic Evaluation

• Service life
• Interest rate (vest charge rate)
• Salvage value
Service Life

- Service life is that time that a countermeasure serves in a fully functional manner as originally intended.

Vest Charge Rate

- Interest rate (time value of money) must be applied consistently for all competing countermeasures.
Salvage Value

- Net value at end of service life
- Often zero
- May be negative, if no value, but costs to remove

Anticipated Benefits

- Accident reduction
- Reduced travel time
- Reduced delays
- Reduced fuel consumption
Source of Accident Reduction Factors

- Agency studies
- Caltrans
- ODOT
- Missouri DOT
- Washington DOT
- Current literature
- Federal Highway Administration

Established Dollar Value of Accident Costs

- NSC
- NHTSA / FHWA
- Agency policy
Traffic Crash Costs:

<table>
<thead>
<tr>
<th>AIS Level Severity</th>
<th>Descriptor</th>
<th>Cost Per Injury (Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Damage Only</td>
<td></td>
<td>65,000</td>
</tr>
<tr>
<td>AIS 3 (C)</td>
<td>Serious Injury</td>
<td>175,000</td>
</tr>
<tr>
<td>AIS 4 (B)</td>
<td>Severe</td>
<td>565,000</td>
</tr>
<tr>
<td>AIS 5 (A)</td>
<td>Critical</td>
<td>2,290,000</td>
</tr>
<tr>
<td>AIS 6</td>
<td>Fatal</td>
<td>3,000,000</td>
</tr>
</tbody>
</table>

Source: NHI, 2005

FHWA Costs per Accident

<table>
<thead>
<tr>
<th>Accident Type</th>
<th>Cost (Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDO</td>
<td>2,300</td>
</tr>
<tr>
<td>Type C Injury</td>
<td>22,000</td>
</tr>
<tr>
<td>Type B Injury</td>
<td>42,000</td>
</tr>
<tr>
<td>Type A Injury</td>
<td>208,000</td>
</tr>
<tr>
<td>Fatal</td>
<td>3,000,000</td>
</tr>
</tbody>
</table>

Source: Highway Safety Manual
Economic Evaluation Methods

- Total cost
- Net benefits
- Cost effectiveness
- Benefit cost ratio

Appropriateness of Total Cost Method

- Total cost may be used only when benefits are equal for all alternatives

Total Cost = Safety Costs + Implementation
Appropriateness of Net Benefit Method

• Net benefit method may be used only when implementation costs are equal for all alternatives

Net Benefit = Safety Benefit – Implementation Costs

Comparison of Net Benefits and Benefit/Cost Ratios

<table>
<thead>
<tr>
<th>Annual Costs</th>
<th>Existing</th>
<th>Project A</th>
<th>Project B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction cost</td>
<td>0</td>
<td>$9,000</td>
<td>$85,000</td>
</tr>
<tr>
<td>Operation cost</td>
<td>$3,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maintenance cost</td>
<td>$2,000</td>
<td>$1,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Safety costs</td>
<td>$150,000</td>
<td>$140,000</td>
<td>$45,000</td>
</tr>
</tbody>
</table>
Comparison of Net Benefits and Benefit/Cost Ratios

Net Ben_A = $10,000 - $5,000 = $5,000

Net Ben_B = $105,000 - $100,000 = $5,000

BCR_A = $1000 / $5000 = 2

BCR_B = $105,000 / $100,000 = 1.05

Appropriateness of Cost Effectiveness

- Cost effectiveness may be used when implementation costs are known and magnitude of effects can be quantified for alternatives

Cost Effectiveness = \(\frac{\text{Diff.in Costs}}{\text{Diff.in Effects}} \)
Cost Effectiveness

\[\text{CE Ratio} = \frac{\text{Cost}_{\text{New}} - \text{Cost}_{\text{Current}}}{\text{Effect}_{\text{New}} - \text{Effect}_{\text{Current}}} \]

For example -
Dollar cost to reduce fatal accidents by one

Benefit Cost Ratio Method

- Benefits and costs must be quantified for each alternative

\[\frac{\text{B/C}}{\text{C}} = \frac{\text{Safety Benefits}}{\text{Implementation Cost}} \]
Example: Benefit-Cost Analysis

• Given information
 – Initial implementation cost = $100,000
 – Additional O&M cost = $4,000/yr
 – Accident reduction (annual) from improvement
 • 1 injury accident
 • 12 PDO accidents

Example: Benefit-Cost Analysis

– Accident costs
 • Injury accident: $200,000
 • PDO accident: $4,000
– Salvage value = 0
– Service life = 10 yrs
– Discount rate = 10% p.a.
Example: Benefit-Cost Analysis

• Calculations solution
 – Annual safety benefits ($ saved)
 1 x $200,000 = $200,000
 12 x $4,000 = $48,000
 Total = $248,000
 – Equivalent uniform annual cost (EUAC)
 = $200,000 (CRF) + $24,000
 = $200,000 (0.1424) + $24,000
 = $52,480
 – B/C = 248,000 / 52,480 = 4.7

Appropriateness of Countermeasure Selected

• Evaluate benefits versus costs
• Result depends on;
 – Service life identified
 – Values of accidents assumed
 – Vest charge selected
 – Costs of construction, operation, maintenance