Background

• Utility poles are one of the more substantial objects intentionally placed on roadside
• U.S. has 88 million utility poles within highway rights-of-way
Crashes Experienced

- Fatal crashes with utility poles = 1,008
- Fatal crashes - ~1% of all pole crashes
- Injury crashes – 40% of pole crashes
- Adverse weather crashes – 25% of pole crashes
- Daylight crashes – 50% of pole crashes
- Nighttime crashes – 25% of pole crashes

Utility Pole
Objective 1

Treat specific utility poles in high-crash and high-risk spot locations
Strategy A

- Remove Poles in High-Crash Locations
 - Prospective locations based on
 - History of pole crashes (responsive)
 - Likely pole crashes (proactive)
 - Criteria for removal;
 - Is pole necessary?
 - Is there another way to serve the same need?

Strategy B

- Relocate Poles in High-Crash Locations
 - Farther from roadway and/or to less vulnerable locations
 - Michigan study –
 - Vehicles likely to run off the road or outside of curves
EXHIBIT V-4
Curve Direction and Crash Frequency
Source: O'Day, 1979

RIGHT CURVE
LEFT DEPARTURE
(41 Accidents, 15 Fatal)

LEFT CURVE
RIGHT DEPARTURE
(76 Accidents, 31 Fatal)

LEFT CURVE
LEFT DEPARTURE
(28 Accidents, 6 Fatal)

Crossover
Countermeasure to reduce hazard

- Use a small number of breakaway strain poles on outside of curves
- Use compression struts on inside of the curve
- Reference
Vulnerable Locations

• Lane drops, intersections and sections where the pavement narrows
Thoughtful Pole Placement?

EXHIBIT V-7
T-Intersection that Has Experienced Frequent Utility Pole Crashes when Left-Turning Vehicles Lose Control and Run Off the Road
Effectiveness

- Studies have found crashes decrease in relation to the distance between the pavement edge and the pole (Zegeer, Parker, Cynecki, 1984)
EXHIBIT V-9A

Percent Reduction in Crashes for Moving Poles Farther from the Roadway
Source: Zegare and Cynechi (1984)

<table>
<thead>
<tr>
<th>Pole Line Before Removal (Ft)</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>50</td>
<td>58</td>
<td>64</td>
<td>68</td>
<td>72</td>
<td>74</td>
<td>77</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>46</td>
<td>53</td>
<td>58</td>
<td>64</td>
<td>67</td>
<td>70</td>
<td>74</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>35</td>
<td>44</td>
<td>50</td>
<td>57</td>
<td>60</td>
<td>65</td>
<td>69</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>26</td>
<td>36</td>
<td>43</td>
<td>51</td>
<td>55</td>
<td>59</td>
<td>65</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>17</td>
<td>28</td>
<td>36</td>
<td>45</td>
<td>49</td>
<td>54</td>
<td>61</td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>8</td>
<td>20</td>
<td>29</td>
<td>39</td>
<td>44</td>
<td>50</td>
<td>57</td>
<td>62</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>–</td>
<td>13</td>
<td>23</td>
<td>33</td>
<td>39</td>
<td>45</td>
<td>53</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11</td>
<td>23</td>
<td>29</td>
<td>37</td>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td>11</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>18</td>
<td>25</td>
<td>33</td>
<td>42</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>20</td>
<td>29</td>
<td>39</td>
<td>46</td>
</tr>
<tr>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>14</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>12</td>
<td>21</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td>17</td>
<td>29</td>
<td>37</td>
</tr>
</tbody>
</table>
Relocated – Year 1

6 Months Later!!
Strategy C

- Use Breakaway Devices
 - Studies show that 31% of non-breakaway poles are knocked down or severely damaged upon impact
 - Breakaway poles allow vehicles to pass through on impact
 - Initial cost, $2000-$3000/pole
 - Annual maintenance, $1000/pole

Breakaway Pole Criteria for Use

- Pole is in clear zone
- Removing or relocating pole is not practical
- Pole is class 4-40 or smaller, without attached heavy devices
- Safe recovery area behind pole, free of hazards
Breakaway Pole Criteria for Use

• No significant pedestrian activity
• Final pole position and wires create no hazards for pedestrians, vehicles or property owners

Strategy D

• Shield drivers from poles in high-crash Locations
 Guardrails and Other Roadside Barriers-
 – Aim is to direct errant vehicles away from pole
 – Cost-effectiveness study of barrier and end treatment
 – AASHTO Roadside Design Guide or ROADSIDE 5.0 software (2002)
Guardrails and Other Roadside Barriers

• Criteria for use;
 – Pole is in clear zone area
 – Removing or relocating pole is impractical
 – Breakaway poles can’t be used
 – Guardrail and end treatment provides less hazard
 – Guardrail will not redirect vehicles into higher crash area
 – Guardrail is 2 or more feet from edge of travel lane
 – Guardrail will not deflect into pole on impact

Crash Cushions

• Purpose: to shield vehicle occupants from rigid objects
 – Cost-benefit/cost effectiveness analysis should justify their use
 – Crash cushions absorb impact energy in controlled crash
Crash Cushions

• Criteria for use;
 – Pole is located in clear zone
 – Removing or relocating pole is impractical
 – Adequate space between travel lane and pole to accommodate crash cushion
 – Crash cushion does not cause a hazard to other vehicles
 – Sufficient clear zone area to provide for redirected vehicles

Strategy E

• Improve the driver’s ability to see poles in high-crash locations
 – Where previous strategies don’t work, delineate
• AASHTO Roadside Design Guide order of priority;
 – Redesign the facility to reduce ROR crashes
 – Remove or relocate the object
 – Redesign the object or shield it to lessen impact
 – Delineate the object
Strategy F

• Apply traffic calming measures to reduce speeds on high-crash highway sections
 – Use Traffic calming measures to reduce speeds, thus severity
 – Information or traffic calming techniques: http://www.ite.org/traffic/index.html
Objective II

Do Not Place Utility Poles in High-Crash Locations

– Control or relocate pole placement during:

New construction
Widening projects
Other projects

Strategy G

• Develop, revise and implement policies to prevent placing or replacing poles within the recovery area

– Policy must be reasonable to gain acceptance

– Issues to be addressed

• Function of roadway
• Lateral displacement of encroaching vehicles
• Location of underground utilities
• Roadside conditions
• Prevailing roadway speed
• Volume of traffic
Objective III

- Treat several utility poles along corridor to minimize likelihood of crashing into utility pole
 - This objective has a corridor orientation
 - Pole crashes are often spread along, not at one pole or cluster of poles

Strategy H

Place Utilities Underground

- Obvious strategy
- Possible results of replacing a pole underground
 - Roadside has suitable recovery area without pole, which gives sizeable effect
 - In many cases, many objects exist in area so pole is less important
 - If poles support street lights, loss of lighting could reduce safety
 - 34% urban utility poles have street lights attached
Strategy I

• Relocate poles along corridor farther from roadway and/or to less vulnerable locations
 – Increasing distance from pavement edge to pole
 • Poles at curbs, three times more likely to be struck than at 10 ft. (Mak & Mason, 1980)
 – Relocating a line of poles farther from the pavement edge gives crash reduction factors in next exhibit

Strategy J

• Decrease number of poles along corridor
 – Strategy is to reduce pole density
 – Jones & Braun (1980) found pole density has highest correlation to pole crashes
 – With poles placed farther apart, openings between poles get larger
Too Many Poles?

EXHIBIT V-18
Schematic showing how increasing the pole spacing provides large areas for errant vehicles to pass through without striking a pole.
Estimation of Pole Crashes/Mi/Yr

• Expected number of pole crashes/mile/yr
 – Depends on
 • Average daily traffic (ADT)
 • Pole density (Den)
 • Average pole offset from roadway (OFF)

\[\text{Acc/Mi/Yr} = \frac{9.84 \times 10^{-5} (\text{ADT}) + 0.0354 (\text{Den})}{(\text{OFF})^{0.6}} - 0.04 \]
Questions?