Objectives

- To understand what is meant by the term internal curing
- To understand the principles that are used to proportion internally cured mixtures: 1) chemical shrinkage volume 2) aggregate spacing 3) aggregate properties
- To understand the tests that are used to quantify aggregate performance

What is Curing

- Describes the process by which hydraulic-cement concrete matures and develops hardened properties over time
- Continued hydration of the cement in the presence of sufficient water and heat.
Conventional Curing (ACI 308)

- Measures taken to limit the loss of water, heat, or both, from the concrete, or by externally providing moisture and heat.
- Action taken to maintain moisture and temperature conditions in a freshly placed cementitious mixture to allow hydraulic-cement hydration and, if applicable, pozzolanic reactions to occur.

External Curing

- Conventional concrete is done to the outside of the concrete
- Can think of this a little like a crab/lobster exoskeleton

Most Common Types of External Curing

- Water Ponding, Sprinkling, Burlap: Supply Additional Water
- Curing Membranes: Reduce Loss of Water to the Environment

http://express.howstuffworks.com/exp-exoskeleton.htm
Are There Other Options

- Exoskeleton vs Endoskeleton
- Can we look inside the concrete
- Can we supply water from inside

http://science.howstuffworks.com/environmental/earth/geology/dinosaur-bone-age.htm

Objective
Concept
Internal and External Curing
Proportioning Principles
Example
Aggregate Properties

Internal Curing (IC)

- IC works from the inside of concrete
- IC uses reservoirs of water that hide water before set to get a dense structure and make the water available after set for hydration

Castro et al. 2010

Objective
Concept
Internal and External Curing
Proportioning Principles
Example
Aggregate Properties

Where Do We ‘Hide’ IC Water?

- Porous Inclusions - a solid body that contains pores for gas or liquid to be enclosed within the mass of a mineral.
- Lightweight aggregate has pores that enable it to absorb water that can be released after setting
Why IC and Why Now?

- HPC are ‘dense’ and remove and disconnect large pores
- While this is good for durability it makes it more difficult for curing water to move into concrete
- Concrete also self-desiccates (i.e., dries from inside without water loss)
- Self-desiccation increases in low w/c & with supplementary materials

What is Self-Desiccation

- Simply – it’s like internal drying without water loss
- A reduction in internal relative humidity (RH) occurs when pores are emptied
- What causes these pores to empty?
- Does the size of the pore matter?

Proportioning Principles

- Aggregate Spacing – the LWA need to be well-spaced to allow water to reach all the paste
- How much LWA/water is needed – The majority of uses are performed based on replacing chemical shrinkage of the hydrating paste
- Properties of the Aggregate – The aggregate needs to be able to absorb and release the water
Proportioning Principles

- Aggregate Spacing – the LWA need to be well-spaced to allow water to reach all the paste
- How much LWA/water is needed – The majority of uses are performed based on replacing chemical shrinkage of the hydrating paste
- Properties of the Aggregate – The aggregate needs to be able to absorb and release the water

Internal Curing Water Distribution

- Need paste to be within close proximity to LWA
- Fine aggregate protects more of the paste than the coarse lightweight aggregate
- Bentz from NIST has developed a HCSS model
- ESCS FLWA works well

Proportioning Principles
Chemical Shrinkage

- Le Chatelier
- 1850-1936
- Volume of reactants larger than volume of the products
- Chemical Shrinkage

Self Desiccation and Setting

Chemical Shrinkage vs. Time

- Chemical shrinkage occurs as cement hydrates
- Occurs in all cements
Why is this an Issue in Lower w/c

- **Chemical Shrinkage (CS)** is not very sensitive to w/c at early ages
- AS should decrease as w/c increases....
- Do higher w/c have less self-desiccation??
- Size of the voids:
 a) Capillary vs Gel
 b) Few/big voids
 c) Lower pressures

Summary So Far

- **Curing** – provide or maintain water to enable the cement to hydrate
- Most curing is external – Here we will ‘hide’ water in the porous LWA
- IC is more important for low w/c mixtures with supplemental cement
- Self-desiccation occurs when water is consumed by the hydration reaction (CS) emptying pores

Mixture Proportioning for IC

- Concept of proportioning mixtures for internal curing is simple
- Demand – Space created by chemical shrinkage (or other loss)
- Supply – Water stored in the LWA
Mixture Proportioning for IC

- How much lightweight aggregate should we use?
- Three Basic Methods
 - Rule of Thumb
 7 lbs per 100 lbs cementitious
 - Simple Calculation: Supply vs Demand
 - More Complicated Features

Simple Rule of Thumb

- 7 lbs water per 100 lbs cementious
- 6 bag mixture – 564 lb/yd³
- IC Water = 7*564/100 = 39.5 lb/yd³
- Assume Aggregate with 15% Absorption
- Mass\textsubscript{LWA-OD} = 39.5/15% = 263 lb/yd³
- Very Good First Approximation

Conventional Concrete

- SG\textsubscript{Cement} = 3.15; SG\textsubscript{C, Agg} = 2.68
- SG\textsubscript{F. Agg} = 2.75; SG\textsubscript{LWA} = 1.52
- Density = SG * 62.4 lb/ft³
- Volume = Mass/Density

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Density</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>203.0</td>
<td>62.4</td>
<td>3.25</td>
</tr>
<tr>
<td>Coarse Aggregate</td>
<td>1750.0</td>
<td>173.8</td>
<td>10.20</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>151.4</td>
<td>107.2</td>
<td>9.06</td>
</tr>
<tr>
<td>Lightweight Aggregate</td>
<td>~</td>
<td>94.8</td>
<td>~</td>
</tr>
<tr>
<td>Air</td>
<td>~</td>
<td>~</td>
<td>1.62</td>
</tr>
</tbody>
</table>
Example for One Yard of Concrete With Internal Curing

- Mass_{LWA} = 263 lb
- Vol_{LWA} = 263/(1.52*62.4) = 2.78 ft^3
- Vol_{F. Agg} = 9.05 – 2.78 = 6.28 ft^3
- Mass_{F. Agg} = 6.28*2.68*62.4 = 1051 lb

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Internally Cured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>564.0 lb/yd^3</td>
<td>564.0 lb/yd^3</td>
</tr>
<tr>
<td>Water</td>
<td>203.0</td>
<td>203.0</td>
</tr>
<tr>
<td>Coarse Aggregate</td>
<td>1750.0</td>
<td>1750.0</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>1514.9</td>
<td>1050.8</td>
</tr>
<tr>
<td>Lightweight Aggregate</td>
<td>~</td>
<td>263.2</td>
</tr>
</tbody>
</table>

Objective

- Concept Internal and External Curing
- Proportioning Principles
- Example
- Aggregate Properties

Volume Proportions

- Mixture Proportioning for IC
 - How much lightweight aggregate should we use?
 - Three Basic Methods
 - Rule of Thumb
 7 lbs per 100 lbs cementious
 - Simple Calculation: Supply vs Demand
 - More Complicated Features
Demand Equation

- Demand – Volume created when cement reacts (hydrates) – this is known as chemical shrinkage
 - The product of three terms
 - C_f – Cement Factor – The amount of Cement in the concrete
 - CS – the chemical shrinkage of the cement (est 0.064 ml/g)
 - α_{Max} is the expected maximum degree of hydration (0 to 1)

Supply Equation

- Supply – the amount of water that is supplied by the lightweight aggregate. This is the water stored in the aggregate.
 - The product of three terms
 - M_{LWA} – Mass of the lightweight aggregate
 - ϕ – the volume of water absorbed by the lightweight aggregate (absorption) - refers to the water absorbed at a particular time
 - S – the saturation factor

Example

- Determine the mass of LWA for a cubic yard of concrete if one uses internal curing.
 - The plain mixture has a cement content of 560 lb/yd3, Chemical shrinkage of 0.07 ml/gcem, and a LWA with 15% porosity (determined from 24 hr absorption)
 - Assume $\alpha_{\text{max}} = 1$ and $S = 1$
Mixture Proportioning for IC

- How much lightweight aggregate should we use?
- Three Basic Methods
 - Rule of Thumb
 7 lbs per 100 lbs cement
 - Simple Calculation: Supply vs Demand
 - More Complicated Features
 - Account for time dependent absorption
 - Account for desorption (water release)
 - Account for features other than CS

Mixture Proportion Equation

- Bentz Equation (1999)
 \[M_{LPA} = \frac{C_f \times CS \times \alpha_{sat}}{S \times \phi_{LPA}} \]

- Castro modified the expression. While the concept is the same, accounts for time of saturation \(t^a \) and the desorption of the aggregate \(\psi \) (discussed later).

This may be needed for some aggregate but since \(\psi \) is high (>85%) for ESCS materials small correction likely not needed.
Proportioning Principles

- Aggregate Spacing – the LWA need to be well-spaced to allow water to reach all the paste
- How much LWA/water is needed – The majority of uses are performed based on replacing chemical shrinkage of the hydrating paste
- Properties of the Aggregate – The aggregate needs to be able to absorb and release the water

Lightweight Aggregates Have a Long History of Use in Concrete

- 126 - Pantheon, Rome, Italy
- 1929 – First high rise “Haydite LWA”
- 1990’s Hibernia Offshore Platform – St. Johns, Newfoundland

Manufacture of LWA

- Expanded surface shale, clay or slate
- Bloat (expand) when heated, entrap gas
Bloating

- Depends on composition
- Occurs during heating
- Bricks – undesirable; heated so gases evolve before the brick becomes glassy
- Gas trapped in the process (CO₂, SO₂)
- May be improved with additives
- The secret - pores that are left behind are essential for internal curing

Lightweight Aggregate Structure

- #8 agg images from x-ray tomography
- A large volume of pores can be seen
- These pores come in various sizes and connectivity

Which Aggregates to Use

- Particle shape and surface texture influence the finished properties, the workability and other aspects
- Aggregates will have a different absorption capacity, density and other features
- Castro et al. (2010) however observed that after testing a wide range of expanded aggregate in North America that all worked for IC
Aggregate Testing

Objective

- Gradation (spacing, paste content)
- Specific gravity (mixture proportioning)
- Absorption: how much water can be held
 - Absorption during the first 72 hours
 - 24 hour absorption, using cone and paper towel method
- Desorption: how much water will be released back to the mixture
 - Curve of desorption during drying
 - Thermo Gravimetric Analyzer, Q5000

Grading/Specific Gravity

Objective

- Grading of the LWA can be measured like a conventional sand
- Grading will influence workability and paste content
- In general a wide range of gradations will work for internal curing
- This can be similar to or improve existing sand gradings
- Specific gravity is used to determine the volume (mass) replacement of the fine aggregate with fine lightweight aggregate

LWA Absorption as function of time

Objective

- The 14 most used fine LWA in the U.S. and a European LWA were tested
- Absorption test was developed to measure absorption as a function of time.
- The volume of water absorbed was monitored for 48 hours by determining the amount of water at each age needed that had been absorbed
LWA Absorption over time

- Rapid initial absorption, slows over time
- 24 hour absorption values between 6 to 30%
- Magnitude depends on the source

LWA Absorption Over Time

- When absorption is normalized by 24 hour absorption, they show a relatively uniform behavior described by the power equation

Surface Dry (SD) Condition: Paper Towel Method (ASTM 1761)

- LWA is oven dried, cooled, and soaked for 24 hours (or an alt. time, ASTM 72 hours)
- Excess water is removed
- Free moisture on the surface of LWA is dried by placing it under air current until it reaches surface dry (SD) condition
- Free moisture is monitored by placing a paper towel on LWA. If water is not seen on the towel and LWA did not stick to the paper towel, SD condition was reached.
Centrifuge Test

- Wetted aggregates were placed in the centrifuge.
- The sample is spun to remove excess surface moisture.
- The mass of the spun sample and the mass of the spun sample after oven drying are used to determine the absorbed moisture.
- Good correlation with paper towel test (fast, less subjective, measures surface moisture).

Desorption: Vapor Sorption Testing

- The mass of the sample is recorded as the relative humidity around the sample is changed.
- Larger pores empty at higher relative humidity.

Ideal Desorption Behavior

- Blue line shows typical LWA with over 85% of the absorbed moisture given back to the matrix.
- Red line shows a less desirable porous material.
Desorption of Expanded LWA

Objective
Concept
Internal and
External Curing
Proportioning
Principles
Example
Aggregate
Properties

• ESCS LWA release a large portion of their moisture at high humidities. Commercial materials shown. This is desirable for internal curing.

85 to 98% moisture released

CASTRO ET AL. 2009

ASTM C1761 Desorption

Objective
Concept
Internal and
External Curing
Proportioning
Principles
Example
Aggregate
Properties

• The previous slides show an approach that measures the mass loss for each RH
• ASTM C1761 measures the mass loss between prewetted surface dry (SD) aggregate and the aggregate when its stored over a specific saturated salt (94% RH)
• Benefit is it is a test that is easy to perform as a check step

Characterizing LWA Porous Plate Apparatus

Objective
Concept
Internal and
External Curing
Proportioning
Principles
Example
Aggregate
Properties

• An alternative to characterize LWA at high RH where desorption does not work very well
• Used in soil science
• Referred to as a pressure plate

POUR-GHAZ ET AL. 2010
Characterizing Available ESCS LWA Used in North America

Objective

- Aggregates release substantial moisture at high relative humidities

<table>
<thead>
<tr>
<th>ESCS</th>
<th>24-hour absorption (%)</th>
<th>0.65</th>
<th>0.70</th>
<th>0.75</th>
<th>0.80</th>
<th>0.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slate</td>
<td>15.90 0.62 0.68 0.73 0.80 0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shale</td>
<td>15.50 0.69 0.71 0.74 0.79 0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>15.80 0.64 0.68 0.72 0.77 0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proportioning Principles

1. LWA properties - Gradation, specific gravity, absorption and desorption
2. Proportioning Principles - LWA (Supply); chemical shrinkage (Demand)
3. In general, 7lb of water is needed for every 100 lb of cement (good rule of thumb)
4. Desorption of aggregate is a ‘newer’ property but it is easy to measure with salt

More Information

- Internal Curing of High Performance Concretes - Laboratory and Field Experiences, ACI SP-256, Eds. D. Bentz and B. Mohr, American Concrete Institute, CD-ROM, 2008.
- Friggle, T., and Reeves, D., Internal Curing of Concrete Paving Laboratory and Field Experiences, ACI SP-256, Eds. D. Bentz and B. Mohr, American Concrete Institute, 71-80, CD-Rom, 2008.
- The Economics, Performance, and Sustainability of Internally Cured Concrete, ACI SP-290, Eds. A.K. Schlinder, J.G. Grygler, and W.J. Weiss, American Concrete Institute, CD-ROM, 2012 (papers by Bastes, Streeter, DiBella)

http://www.escsi.org/ContentPage.aspx?id=205&ekmensel=1b7c39fc_61_74_205_1

Summary

- Internal curing uses porous inclusions (LWA) to supply curing water
- Aggregate needs to be well spaced, ESCS FLWA provides good spacing
- Important LWA properties – Gradation, specific gravity, absorption and desorption
- Proportioning Principles - LWA (Supply); chemical shrinkage (Demand)
- In general, 7lb of water is needed for every 100 lb of cement (good rule of thumb)
- Desorption of aggregate is a ‘newer’ property but it is easy to measure with salt

More Information

- Internal Curing of High Performance Concretes - Laboratory and Field Experiences, ACI SP-256, Eds. D. Bentz and B. Mohr, American Concrete Institute, CD-ROM, 2008.
- Friggle, T., and Reeves, D., Internal Curing of Concrete Paving Laboratory and Field Experiences, ACI SP-256, Eds. D. Bentz and B. Mohr, American Concrete Institute, 71-80, CD-Rom, 2008.
- The Economics, Performance, and Sustainability of Internally Cured Concrete, ACI SP-290, Eds. A.K. Schlinder, J.G. Grygler, and W.J. Weiss, American Concrete Institute, CD-ROM, 2012 (papers by Bastes, Streeter, DiBella)
Acknowledgements/Disclaimer

- These slides were developed as part of a series for the Expanded Shale, Clay and Slate Institute by Jason Weiss.
- These materials are provided as general information and do not constitute legal or other professional advice.
- Any use of this information in the design or selection of materials for practice should be approved by the owner and project engineer-of-record.